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I. INTRODUCTION

In the nineteenth century, Von Clausewitz [Ref. 5] remarked that
"war is nothing but a duel on a large scale." Subsequently, in the
twentieth century, the theory of stochastic-duels was developed by C. J.
Ancker [Refs. 2, 3, and 4] and others to mathematically look at such
duels in order to have a mathematical basis for studying modern combat.
Thus, the theory of stochastic duels considers combat at a microscopic
level (individual fires opposing each other), whereas at the other
extreme the Lanchester theory of warfare considers it at a macroscopic
level (large groups of homogeneous fires opposing each other). This
thesis will review the conceptual foundation of the theory of stochastic
duels (in particular, one-on-one duels) and then develop a modest
extension to more realistic combat situation (namely, two-on-one duels).

Additionally, the author hopes that his exposition about this
material concerning one-on-one duels makes the concept more accessible
to the professional military officers. Thus this expository material
strives to be simple (but yet complete) and self-contained (and hence
full details will be supplied to the reader). It also sets the stage
for the extension to multiple fires (i.e., the two-on-one duel).

Let us now consider the nature of the theory of stochastic duels in
more detail. It {is concerned with the microscopic features of combat
such as kill probabilities of individual rounds, times between rounds

fired, ammunition limitations, etc. In the theory of stochastic duels,

two duellists (usually denoted as A and B) fire at each other until one




or the other has been killed. The times between the firing of suc-
cessive rounds by each duellist are frequently taken to be randonm
variables, pairwise independent. The simplest case is that in which
there is a single duellist on each side (i.e., one-on-one duel).

There are two basic cases for stochastic duels that have been dis-
tinguished in the 1literature: 1) the fundamental duel, and 2) the
classical duel. In the fundamental duel, the two duellists have un-
limited ammunition and each starts with an unloaded weapon. Sgecific
solutions have been derived for a general firing-time distribution ang
also for exponentially-distributed firing times. Later in this thecis
we will give a simple development of the exponential firing time results.
In the classical duel, each duellist starts with a loaded weapon, they
fire simultaneously at the beginning of the duel, and then they proceed
as in the fundamental duel. When the firing time is discrete, the
solution for the stochastic duel has been derived by using a speciai
technique [Ref. 3]. When the firing time is continuous, the soluticn
for the stochastic duel is derived by using the theory of continuous-
time Markov chains. In Chapter IV, a numerical exampie is considered

and corresponding parametric results are graphically presented.
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II. SOME BASIC STOCHASTIC-DUEL MODELS

In this chapter we will consicer some simple (but yet basis) sto-
chastic-duel models for: 1) the fundamental duel, and 2) the classical
duel. In the fundamental duel, the duellists each start with an un-
loaded weapon, load their weapons, and then fire at each other untii one
of them is finally killed. In the classical duel, they both start with
loaded weapons, fire their first rounds simultaneously, and then proceed
as in the fundamental duel. In this chapter, specific solutions are
derived for both the fundamental duel and also the classical duel for
the special case of exponential firing times (which is of fundamental

importance for understanding future enhancements).

A. THE FUNDAMENTAL DUEL

In the fundamental duel, two duellists, A and B, start with unloaded
weapons and then fire at each other until one is killed. A's firing
time (the time between rounds) is a random variable with a known prob-
ability density, fA(t). B's firing time is similarly characterized by
the density, fB(t). Successive firing times are selected from fA(t) and
fB(t), independently and at random. Each time A fires, he has a fixed
probability Pa of killing B. We will denote the probability that B is
not killed as dp» and hence Pat )~ 1. Similarly denoted as Pg» with
its complement being similarly defined (i.e., Pt = 1). After the
starting signal, each contestant loads his weapon, aims, and then fires

his first round. In other words, in the fundamental duel the duellists
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start with unloaded weapons. Both (A and B) have unlimited supplies of

ammunition that, among other things, makes a kill by one of them an

S ultimate certainty. A wins if he is the one to first score a kill. The
1:3 probability of this will be denoted as P(A), and p(A) + p(B) = 1, where
-

p(B) denotes the probability that B wins.

o 1. Development of Results for Fundamental-Duel Model

§ In this section we develop an expression for the probability
;ﬂ that Combatant A wins a "fundamental duel" against Combatant B, denoted
%ﬁ as p(A), in the case in which the firing times are exponentially distri-
Eﬁ buted. OQur final results for p(A) is given by equation (15) below.
:: In order to develop an expression for the probability that A wins
& the duel, we consider the combatants to be decoupled, i.e., each com-
é batant fires at a passive target (one that does not return fire). Let
d - kA(t) denote the probability density for the time for A to kill his
E passive target and KA(t) denote the corresponding cumulative distribu-
'f ) tion function, i.e.,

: Ka(t) = o[t ky(s) ds

"

;: We similarly define kB(t) and KB(t), i.e.

,' Kg(t) = oft kg(s) ds

3

.§ Then in order for A to win the duel he must kill his target before B
f _ kills B's target. In other words

o

. 9




P(A) = Prob [Ty < TB], (1)

Where TA denotes the time [the random variable corresponding to kA(t)]

and similarly for TB [Ref. 6].

GO St e
Sl

t
pA) = [ (1= Ky(s)} d Ky(s) 2)
o
or
t
p(A) = [ (1 - Ky} d kg(s) s )

The above expression holds in general, but we still must develop expres-

sion kA(t) and kB(t) based on our model. In other words, if we assume

that, for example, we know the distributions of firing times and know

- the co?responding single-shot kill probabilities, we must combine these
into a time-to-kill distribution.

Thus, we assume that A's firing time (i.e., the times between

rounds) are exponentially and identically distributed, with common

probability density as fA(t). Thus

r.t

fA(t) =r A

A
where A denotes the firing rate of A. If we assume that the probabil-

ity that A kills his target with any one round is consistant for all

rounds and denote this probability as Pas then

Prob [nth round kills n~-1

. target 1= Pa%% (3)

10

I o I A A T S T o ™ o .i



e

>

.
£

.'...[::':f'_:r", A

[+ -]
A takes time between t - :E nth rounds
Prob [ and t+At to kill target ] Prob [

now

A fires
Prob [ between

then

Prob [

or

A fires
Prob [ between

A fires
between

A fires nth rounds ] (4)
between t and t+At
nth rounds , _ A has fired
t and t+At ] = Prob [ (n=1) rounds by t ]
- A fires one more ]
" round from t to t+At
-1
(ryt)"
nth rounds , _ "~ A -r,t
t and t+At 1= (n-1), e A rait (5)
p Mpn-1
nth rounds A a At at (6)

t and t+at 1 = (a=I),

P Y SRt G et B A T i At P A A 'v‘_'V_n'——_T-' .,

kills target ]
n=1

11




Since {Ref. 1]

Prob [ A has fired ] = (Y'At)n-1 -rAt (7)
(n=1) rounds by t (n-lsi e
and
A fires one round _
Prob [ between t and t+At 1= radt (8)
Substituting (3) and (6) into (4), we obtain
® r ntn-l
A takes time between - :S n-1 A -r
Prob [ ¢ and teat to kill target 1= PA%A (n-1), °© A
n-1 - '
o
- -1
(q,r -t)n
_ -r,t z A"A
= raPp € A At (1), (9)
n=1 '
or
Prob [ A takes time between t ]=op,r e-pArAt (10)
and t+At to kill target Pa"a

12
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Thus
“p,rat
_ A'A
kA(t) = PpTy ©
and
“D,r, et
- YA A
KA(t) = e
Similarly,
-pBrB-t
kB(t) = pgrg ©
and
-pBrBot
KB(t) = e
.o Substituting (12) and (13) into (2), we find that
par
P(A) = —;i,\ﬂo—;.-
Pa"a * Pg"s
<fi which is our final result.
e
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(12)

(13)

(14)

(15)
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B. THE CLASSICAL DUEL

In contrast to the fundamental duel, two duellists, A and B, start
with loaded weapons, fire their first rounds simultaneously, and then
proceed as in the fundamental duel. In order to develop an expression
for the probability that A wins a "classical duel" against Contestant B,

denoted as P(A), in the case in which the firing time are exponentially

distributed. The final solution p{A) is given by equation (21) below.

D ol A M A A A

A kills B on ]

Prob [ A wins ] = [ the 1lst round

Neither is killed

B does not kill A
on the 1lst round

- L

A wins the

+ Prob [ on the 1lst round 1« Prob [ subsequent duel ] (16)
now
A kills B on _
Prob [ the 1st round 1= Pa (17)
B does not Kill A , _
Prob [ | the 1st round 1 = 98 (18)
Neither is killed , _ .
Prob [ on the 1st round 1= 9 * 9 (19)
Prob [ A Wins the 1=p(a), = —AA (20)
subsequent duel f PaTa * Pa"g
14
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where P(A)f: the result of the fundamental duel substituting (10), (i8).

(19), and (20) into (16), we find

(21)

which is our final result. But in the classical duel, the following
i" case will happen, i.e., Contestant A and Contestant B will be killed on

the first round. Therefore

*! P(A) + P(B) # 1

:i; thus

= P(A) + P(B) + P(AB) = 1

é; - where p(AB): the probability that both are killed on the first round.

F P(AB) = 1 - P(A) - P(B) = PaPg (22)
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IIT. AN EXTENSION TO MULTIPLE FIRES

A. DISCRETE FIRING TIME

In a discrete firing time, two duellists, A and B, start with un-
limited ammunition, fire at each other with fixed kill probabilities Pa
of killing B. Similarly denoted as Pa of killing A. They start with
unloaded weapons and fire at fixed intervals a and b respectively. This
is similar to a situation in which each duellist is armed with an auto-
matic weapon.

1. Development of Results for Fundamental-Duel Model

In order to develop an expression for the probability that A
wins the fundamental-duel, we will assume that a and b (fixed firing
interval) are rational numbers if a and b can be reduced to a/B where o

and B are relatively prime integers. And we define

=N ...... r a=ng +r (23)

where n is an integer and r is the remainder.
The total probability of A's total success on the jth rounds
[Ref. 3], i.e.

J:Ib
A's total success , _ zz first j-1th . | Kill on the
P L on the jth round 1= PI round fail 1-°L jth rounds ]
i1
. B is falling on ] (24)

his first K round

16




where K=] %
then
[ ]
A's total success , _ :E j-1 Kk
P T on the jth round 1= (ay) (py) (ag) (25)
=1
or
> r
A's total success -, _ n i in+t[(i+1)(3)]
P on the jth round 1= Padp ZE 9% "% B (26)

j=0

let

(j+1) (g) = [x]

where [xj]: largest integer equal to or less than the number xj

Assume

[xj + kBl = [xj +K.J= [xj] + KY (27)

thus,

p=1
n
P A's total success ] = Padg EE j.ojn+lx.]
on the jth round B _a 9 9% J
179" ag )
j=
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2 a
J c,B[(J+1)(§)]

n+[x1] + qB2n [xz] + qA B-1 qBa-n
P a -
= _%T QB[B] + q,0q (5, ... . ayf . ag’  [Ref. 3]
(1-q47ag") .
(28)
where n = [%] , r=a-mg, and  [x;]= (D) g]
Simi]a}Iy
B's total success , _ [(K+1)E]
PL . = * q a” (29)
on the jth round (l'qA qB ZE A

which is our final results for the fundamental duel as the equation
(28).

2. Development of Results for Multiple-Duels Model

In this section we develop an expression for the probability
that Contestant A wins "multiple-duels" against Contestant B. In this
duel, there are two contestants on the A's side and one contestant on the

B side as shown in Figure 1.

18
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Figure 1. The Situations of Duel

Each time A (A;, A;) fires, A has a fixed probability Pa of killing
B. We will denote the probability that B is not killed as Q> and hence
Py * qy = 1. Similarly denoted as Pg» with its complement being simi-
larly defined (i.e., Pg*t 0 = 1). Both (A and B) have unlimited ammu-
nitions. If the B contestant kills an A; (or A,) he immediately shifts
his fire to the remaining A. In this situation, the probability that

the side "A" can win is the following:

. wal (4 <
P IRs side ] = A" side kills B and j

wins both A; and A, survive

"A" side kills B and one "A" (A; or Ay) ]
are to be killed and only one A survivor




..............

thus

Both A; and

PIL A survive

] =P {A; or Ay or both ki1l B} - p{B fails to kill}

ZE p {on j-1 rounds no kills} - p {A; or A, or both kill B on jth round}
=1

- p {B fail to jth round}

o 2
. qg (1 - q,")
= z (QAZ * qB)J 1. (1- QAZ) * qB = 8 2 A (30)
j=1 (1- qA 'qB)
and
[+ ]
P [ one A (A; or Ay) survive ] = :E p (no ki1l on j-1 round)
J=1

- {p (B ki1l A; or A, and A fail to B) Pf(A)

+ p (B kill one A and A ki1l B)}

A




e T D T P Ty - T P T TV Y ﬁﬁ}

thus

one A (A, or ., _ 2, j~1 a2
PIL Az) survive 1 :E (qA qB) pB % Pf(A)
J=1

2

ag)i 7} ) 31)

(qu * pB (1- qA

=1

where Pf(A) is the results of a fundamental duel in which a=b (fixed

firing time).

Thus,

Pe(A) = (T_-_—E!E;S [from the equation (28)] (32)

Substituting equation (32) into equation (31), we find that:

The side . _ Both A, and One A (A, or
PLougn ywing 1=P L A, survive T+PI Az) survive ]

e a2, .2
Py (1 + 9y Pg ~ 9y qg ) (32) |

(1-aq, qg) (1 - qu * qg)

21
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Similarly,

PLage crac 1 = D (@7 - a)ih - pg g2 B (33)
=1

where Pf(B) is the results of the fundamental-duel in which a=b.

Therefore,

p 2. q 3
P L g oioe = e (34)
(1- qa QB) a- qQy qB)
Let us denote P(AB) the probability of draw.
Then,
®
P(AB) = :E p (no kills on j-1 round) - p (B ki1l one A)
=1 |
. one A and B have
p (A does not ki1l B) - p ( duel of draw )
[+
= D @ apil @y - @D - P 8) (35)

22

........
............




where Pf(AB) is the result of the fundamental duels with a=b.

-1 a-1
Pa P qAB qsa

S : B |
1-4ay 9

Pf(AB) = (36)

Pp Pp

But when a=b, Pe(AB) = T-q, 9% (37)

Substituting equation (37) into equation (35)

2 2
_ Pa 92 Pp
P(AB) = (38)

(1 - au99) (1 - q3° - g

which is our final solution as the equation (32) and equation (34).

B. CONTINUOUS FIRING TIME

In this duel, two duellists, A and B, start with unloaded weapons
and then fire at random. But B's sides‘has two weapon systems and A's
sides has only one weapon system. A's firing time is a random variable
with a known probability density, fA(t). B's firing time is similarly
characterized by the density, fB(t). Successive firing times are
selected from each density independently. We will denote r the time

between round fired (i.e., A for A system and s for B systems) and the

23
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firing interval between rounds is independent. Both systems has un-
limited ammunition and fire each other with fixed kill probability Pa

for A system and Pg for B system as shown in Figure 2.

O—

X1(t)’ Pgs Mg

<~

‘.;ij O/ * Ap = TaPa

*
>
(1}

Figure 2. Combat Situations

If we assume that y(t) and x(t) are the state of each weapon system at

time t, then

(t) = § 1 : A contestant was not killed

y 0 : A contestant killed

and
xlg:) = 1: 8 (By or B,) contestant was not killed
xz(t) 0:8 (B1 or Bz) killed.

24
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Let us consider the state of duel in Figure 3.

Biadt el Sualh st Sanlh End Al ARl St st uitthte el

C W W TR T —m t w e W erwe o e
T T SN T

xz(t)
(0,1,0 o B (1,1,0)
o/
05 x :
™ !
D ¢ M )
(0!191) a2 (191,1) :
\
0 x,(t)
a
6 ay (1,0,0)
Qg
Y000 % F (1,0,1)
* M : Starting Point

y(t)

Figure 3. The State of Duel

att =0

: Transition Rate

(where i=1,2,...)

where points (A), (B), and (C) are the point of B's winning and only

point (E) is the point of A's winning. During the At, the transition

rates are the following:
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(1) P [y hit x5, x; miss y and X, miss y]

= (% AA At) - (l'ABAt) . (1-\BAt)

2 ., 2..3

=35AAAt-AAt +1AA-,\BAt

B
=%AA~At
therefore

LA, - At

Transition rate a; = —_AZE—_- =% Aa

(2) P [y hit x4, x5 miss y and x; miss y] =% Ay v AT

Similarly, Transition rate ap, =% Aa

(3) P [xq hity, xo, miss y and y miss x;] (ABAt) (l-ABAt) (1-\Agt;

Transition rate ag = AB

(4) P [x, hit y, x; miss y and y miss xp] = ABAt

"
>

Transition rate g

......
PN
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(5) P [x, hit y, and y mis x5] (ABAt) . (l-AAAt)

Transition rate ag = A

B

(6) P [y hit x; and xp miss y] = (%A At) (1-Agat)
Transition rate ag = %AA
(7) P [y hit x; and x, miss y] = (%AAAt) (1-Agat)
Transition rate a7 = 5AA
(8) P [x; hity and y miss X1 = (ABAt) (l-AArt)
Transition rate ag = AB
If we assume that Pi (i =1, 2, ...... 8) are the transition pro-

bability, P(A) and P(B) are the following:

P(A) (39)

P, - Pg + P, Py

and

P(B) = Py + Py + Pg + P, + Pg (40)
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Where P, = YT = 5AA - %AA - Aa < AB

::"‘ P, = s + Ogq = A B
2 2 (ay + ap + ag + a4) %AA + !,)\A + )\B + AB
L
s therefore P, + P, +P; =1
o
£
B a }‘B
' = —
& A P B
o . o %AA
:
;. p. = ay )

7 (a7 + ass = %)\A + AB

A

= —
P (a7 + ag) = EX;_:_XE

therefore

- o o, =2 Y P ), (2 ) a1)
P(R) =Py * Pg + Py - Py = Aat2hg \Ag*+er, Ap+2Ag J\sA *Ag (

28
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Similarly

P(8)

P3 + Pz . P5 + Pl . Pg =1 - P(A)

(2"3 >+(”"A ( Ag )+(’5"A )( Ag )
Ay *+ 2 Ag * 2A, M * %AA A * ZAB %AA + Ag

(42)

1}

Which is the final results as the equation (41).
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IV. NUMERICAL EXAMPLE

A. THE FUNDAMENTAL DUEL

Two duellists, A and B, start with unloaded weapons and then fire at
each other until one is killed. A's firing time (the time between
rounds = rA) is 5 rounds per minute. B's firing time (rB) is also 5
rounds per minute. Each time A fires, he has a fixed probability
Pp = 0.6 of killing B. We will denote the probability that B is not
killed as Qy = 0.4, and hence Pa + Pg = 1. Similarly denoted as Pg =
0.6, with its complement being similarly defined (i.e., Pg*tdg = 1).
From the above data, the probability that A's system will win is the
following:
Pa "a
Pa"a * P8

.

P(A)

0. 6X5
0.6X5 + 0.6X5

0.5

But A's winning chances can be enhanced as his rate of fire and/or kill

probability (pA) increases. From the equation (15),

erB = rApA [ﬁ%ﬁj -1] (43)
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The following graphs represent the various cases.

CASE 1: *Aa= '

pB »
Lo P(A)=0.2
y P(A)=0.5
0.5 | P(A)=0.7
0.5 1.0 Py

Figure 4. The Relationship of Pa and Pg When L

CASE 2: r, = 2r

A B
pB 4;p(A)=0.2 P(A)=0.3
1.0 0.5

0.5]

4

0.5 1.0 Pa

Figure 5. The Relationship of Pa and Pg When Th = ZrB
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If A's rate of fire (r is increased (rA = ZrB), the contour are

)
rotated count clockwise around the origin.

. = 1 __
CASE 3: 'sPg = TaPa [3?37 1]
. _ P(A)=0.3
raPg P(A)=0. / e
1.0
P(A)=0.5
-~ P(A)=0.7

0.5 1

0.5 1.0 aPp

Figure 6. The Relationship cf *aPA and raPg

From Figure 6, A's winning chances (p(A)) are enhanced as his rate of

fire (rA) and/or kill probability (pA) increases.

B. THE CLASSICAL DUEL

In the classical dueil, two duellists, A and B, start with loaded
weapons, fire their first rounds simultaneously, and then proceed as in
the fundamental duel. Each time A fires, he has a fixed probability
Py = 0.6 of killing B. Similarly denoted as Pg = 0.6 of killing A. A's
firing time is 5 rounds per minutes and B's firing time is also 5 rounds

per minute.
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Therefore, P(A) can be expressed: P(A) = Padg * 929 (Pf(A)) by the
equation (16) where Pf(A) is the result of the fundamental duel. By the

equation (21),

Padg (Pgrg * Ta)

P(A)
Pata * Pg"g

_ 0.6X0.4 (0.6X5 + 5)

0.6X5 + 0.6X5
= 0.32

Similarly,

P(B) = 0.32

and the probability that both are killed on the first round:

P(AB) = 1 - P(A) - P(B) or P(AB) = PaPg

0.36

where P(AB) is the probability that both are killed in the first round.
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C. AN EXTENSION TO MULTIPLE FIRES -

i: First, we will consider fundamental duel case when firing time is
discrete. In a discrete firing time, two duellists, A and B, start with
unlimited ammunition, fire at each other with fixed kill probabilities
Py = 0.6 of killing B. Similarly denoted as Pg = 0.6 of killing A.
They start with unloaded weapons and fire at fixed interval a and b
respectively. Let's consider a various case of a and b.

l. a=b=1

From the equation (23) % =1l,n=1,r=20

- therefore,
2 _—
o P A's total success ] = Pa% J. in+[x.]
- on the jth round 1 - q.Pg.® 9% 9% ]
L ' 9 9% _
. =0
g = 0.285
1.0
P(A)=0.1
0.8
. P(A)=C.3
0.6
P(A)=0.5
: 0.4
P(A)=0.7
X 0.2 |
P(A)=0.9
- - * Py
0.2 0.4 0.6 0.8 1.0
'- ‘ Figufe 7. The Relationship Between Pa and Pg When a = b
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2. a=10,b=5%

From the equation (23)

similarly,

's total success . _
P L on the jth round ]1=0.1

1.0

0.8 |

0.6 P(A)=0.1

0.4 | P(A)=0.3
P(A)=0.5

0.2 P(A)=0.7
P(A)=0.9

——

0.2 0.4 0.6 0.8 1.0 Pa

Figure 8. The Relationship Between PA and Pg When a = 2b
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.. A's total success , _
Similarly, PL on the jth rounds ]=0.743
Py , P(A)=0.1
1.0 0.5 0.9
0.3 0.7 )
0.8 :
0.6
0.4 |
0.2

Pg
0.2 0.4 0.6 0.8 1.0

Figure 9. The Relationship Between Py and pg Wheﬁ a=5kb

Secondly, we will consider multiple-duel when firing time is dis-
crete. In this duel, there are two combatants on the A's side and one
combatant on the B's side as in Figure 1. A (A,, A;) has a fixed
probability Py = 0.6 of killing B. Similarly denoted is Pg = 0.6 of
killing A. From the mentioned data, we can get the probability that A's

system will win. From the equations (32 and (33),




i 2 2

- . . Pa (1 + qypg = 9y79g7)

e P [ The side "A" win ] = 5

(\‘ a- quB) a- qA qB)

2 = 0.93

y and

3

pBZ qA

2 P [ The side "B" wins ] = 5

-. (1- quB) (1- qA qB)

= 0.026

ti Similarly, from the equation (38)

X ' Draw of both , _

R PI sides (AB) 1=10.044

k -

therefore P(A) + P(B) + P(AB) = 1

Ef Finally we will consider multiple-duel when firing time is continu-
ous. A's firing time is a random variable with a known probability
5= density, fA(t). The time between rounds fired is random variable having
:3 exponential distribution with Ty T 5 round per minute for "“A", rg = 5
ol

> rounds per minute for "B". The kill probability of "A" sides is Pa = 0.6,
i and Pg = 0.6. Therefore, from equations (41) and (42) we can get P(A)
%: and P(B):

f' .
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P(A) = Pz . Ps + Pl . P7
() Chy) () Cary)
= +
(AA + ZAB) * (AB + %AA) (AA + ZAB) (%AA + AB)
= 0.11.

and similarly,

P(B) = P3 + Pz . PS + P1 . Pa

1
At g At 2g/\Ag Ry [ \Ay g J 0, + A
) = 0.89
where AA = TaPp and AB- raPg
38




V. SUGGESTED FUTURE WORK

Models investigated in this paper include simple stochastic models
and a multiple duel model using the theory of continuous-time Markov
chains. The standard case was unlimited time, unlimited ammunition, and
a fixed kill probability. Models in which both time and ammunition are
limited would be desirable. Numerous extensions and modifications of

the fundamental-duel can be further studied as follows [Ref. 4]:

CASE 1: One-Versus-One

(1) Variable Kill Probability - Pa and pg are special functions of time
and round dependent kill probability.

(2) Duel with initial suprise - random initial suprise

(3) Fixed ammunition supply, etc.

CASE 2: Two-Versus-Two

(1) Several multiple:
A «8 A— «—B
~N
and

A— «—B A—> «—B

where A and B are contestants.

(2) Round dependent kill probability, connection with Lanchester's
models.
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However, these suggested modeis with more than two contestants may be

limited to simple situations because the uncoupling principle which is

L.
P
P.
P
&

used to solve the fundamental-duel is nv longer applicable.
Consequently, we must consider each evernt as it occurs, as well as
all the possible interactions and conditicnal events that may occur

subsequently.
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VI. FINAL REMARKS

Simple stochastic models for the fundamental-duel and the classical-

duel have been reviewed and analyzed by the graphical methods. For the

extension to multiple-duels two situations have been considered: 1)
discrete firing times, and 2) continuous firing times. When the firing
u. time 1is discrete, we are able to examine some duels in which strong
interactions occur by limiting our consideration to those situations in
which the time between rounds is constant. When the firing time is
éi continuous random variables, an expression for the probability of
; winning such a duel is derived by using the theory of continuous-time
Markov chains. Numerical examples for each model are presented. Still

ﬂ. . there is much work left to be done in the future.
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